AES Semigas


11 May 2023

Microchip unveils SiC-based E-Fuse demonstrator for 400–800V battery systems

High-voltage electrical subsystems throughout battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) require a mechanism to protect the high-voltage distribution and loads in the event of an overload condition. To provide BEV and HEV designers with a faster and more reliable high-voltage circuit protection solution, Microchip Technology Inc of Chandler, AZ, USA has announced the E-Fuse Demonstrator Board, enabled by silicon carbide (SiC) technology, available in six variants for 400–800V battery systems and with a current rating up to 30A.

The E-Fuse demonstrator can detect and interrupt fault currents in microseconds, 100–500 times faster than traditional mechanical approaches because of its high-voltage solid-state design. The fast response time substantially reduces peak short-circuit currents from tens of kilo-amps to hundreds of amps, which can prevent a fault event from resulting in a hard failure.

“The E-Fuse demonstrator provides BEV/HEV OEM designers with a SiC-based technology solution to jumpstart their development process with a faster, more reliable method for protecting power electronics,” says Clayton Pillion, VP of Microchip’s silicon carbide business unit. “The E-Fuse solid-state design also alleviates long-term reliability concerns about electro-mechanical devices because there is no degradation from mechanical shock, arcing or contact bounce.”

With the E-Fuse demonstrator’s re-settable feature, designers can package an E-Fuse in the vehicle without the burden of design-for-serviceability constraints. This reduces design complexities and enables flexible vehicle packaging to improve BEV/HEV power system distribution.

OEMs can accelerate development of SiC-based auxiliary applications with the E-Fuse demonstrator because of the built in Local Interconnect Network (LIN) communication interface. The LIN interface enables the configuration of the over-current trip characteristics without the need to modify hardware components, and it also reports diagnostic status.

The E-Fuse demonstrator leverages the ruggedness and performance of Microchip’s SiC MOSFET technology and PIC microcontrollers’ Core Independent Peripherals (CIPs) with a LIN-based interface. The companion components are automotive-qualified and yield a lower part count and higher reliability over a discrete design.

The E-Fuse Demonstrator Board is supported by MPLAB X Integrated Development Environment (IDE) to enable customers to quickly develop or debug software. The LIN Serial Analyzer development tool allows customers to send and receive serial messages from a PC to the E-Fuse Demonstrator Board.

The E-Fuse Demonstrator Board is available in limited sampling upon request.

See related items:

Microchip unveils 3.3kV silicon carbide MOSFETs and Schottky barrier diodes

Tags: Microsemi


Book This Space