Enhancing GaN diode performance with p-oxides

Combining p-NiO and p-LiNiO yields low on-resistance and high breakdown voltage.

cole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland has reported significant improvement in p-oxide/gallium nitride (GaN) heterojunction (HJ) PiN bipolar diodes by inserting a crystalline p-type lithium-doped nickel oxide (p-LiNiO) layer between the drift layer and high-hole-density p-type amorphous nickel oxide layer [Zheng Hao et al, IEEE Electron Device Letters,volume 7, issue 5 (May 2025), p729]. The full device achieved 1.7V turn-on (V_{ON}), low 1.15m Ω -cm² specific on-state resistance (R_{ON,sp}), and high 1065V breakdown voltage (BV).

The team reports comparable performance to GaN homojunction PiN diodes but with simpler fabrication and greater design flexibility. The researchers comment: "Our findings show the potential of p-NiO/LiNiO to replace p-GaN for effective localized p-doped regions in GaN power devices."

Homojunction GaN devices are usually processed by metal-organic chemical vapor deposition (MOCVD) with the p-type layers doped with magnesium. Unfortunately, the doping has a high activation energy and is difficult to activate effectively, resulting in low hole concentrations.

The researchers comment: "Developing highly conductive and high-quality p-layers that can be deposited with great flexibility is crucial to enable advanced device concepts, such as junction barrier Schottky (JBS) diodes, ring terminations, field plates, among others."

The vertical p-NiO heterojunction diode structures on the same GaN chip with three combinations of p-NiO and p-LiNiO as p-region (Figure 1). The anode and cathode metal electrodes were nickel/gold (Ni/Au) and chromium/gold (Cr/Au), respectively. The intrinsic GaN (i-GaN) drift layer was 6µm thick. Patterning was supplied by a 300nm silicon dioxide hard mask.

The p-LiNiO was applied using 400°C pulsed laser deposition (PLD) on a LiNiO target with 9% Li content. The target was ablated using a 248nm krypton fluoride (KrF) excimer laser. The p-NiO deposition was by room-temperature RF sputtering. The 2µm cathode n-GaN and i-GaN drift layers were deposited by MOCVD on 2-inch freestanding GaN from Enkris Semiconductor Inc. A 6.3µm-deep mesa etch was used to isolate the devices. A Schottky barrier diode (SBD) reference was created by depositing the anode metals directly on the i-GaN drift layer.

In pre-fabrication material characterization, the researchers demonstrated p-NiO layers with Hall carrier concentration and mobilities of 2×10^{19} /cm³ and 0.3cm²/V-s, respectively. The resulting resistivity was 0.94Ω -cm. The team comments: "It is worth noticing that although the hole mobility in p-NiO is lower than in p-GaN, this is not relevant for applications where the

Figure 1. Three p-(Li)NiO/GaN heterojunction diodes schemes: (a) p-NiO (25nm), (b) p-LiNiO (25nm), and (c) p-NiO/LiNiO (25nm/25nm) — p-type regions deposited and patterned on the GaN surface.

Technology focus: Nitride diodes 73

Figure 2. (a) Forward and (b) reverse current-voltage (I–V) curves measured from p-(Li)NiO/GaN heterojunction diodes and reference SBD.

p-layers are not aimed for conducting current, but for band-structure engineering. This is the case in localized p-pockets for junction termination extensions and electric field management, as well as in achieving enhancement mode in lateral devices, for which the high hole concentration is a more important feature."

The resistivity of p-LiNiO was much larger at $5k\Omega$ -cm. The researchers suggest the carrier density was of order 10^{15} – 10^{17} /cm³, based on an expected mobility in the range 0.01–1cm²/V-s. X-ray analysis showed the p-LiNiO to be crystalline, while the p-NiO was amorphous.

The researchers proposed the p-NiO/p-LiNiO structure as effectively combining high hole concentration in the p-NiO with superior p-LiNiO film quality. The team explains: "This approach compensates for the poor quality of sputtered p-NiO while retaining a high hole density, thereby improving the p-n heterojunction performance."

The p-NiO/LiNiO diode structure enabled (Figure 2) a high hole density injected from the p-NiO layer through the high film quality of p-LiNiO, achieving small $R_{ON,sp}$ with more than 1000V high BV.

The p-NiO/p-LiNiO bipolar diode was found to combine a relatively low on-resistance with more than $1000V_{BV}$ (Table c). The researchers comment: "Compared to the large V_{ON} (>3V) in regular GaN homojunction PiN diodes, the smaller V_{ON} (1.7V) of p-NiO/LiNiO-GaN heterojunction PiN diode is advantageous for reducing conduction losses. Additionally, double-sweep I–V characteristics performed on the p-NiO/LiNiO-GaN diode showed negligible hysteresis leading to a stable switching operation." The team attributes the higher BV for the p-NiO/LiNiO-GaN diode to lower defect level in the heterojunction from the crystalline epitaxial p-LiNiO layer inserted between the high-hole-concentration p-NiO and GaN drift layer, increasing the electron tunneling barrier and reducing leakage.

The researchers also compare their diodes with other reports (Table d), showing their latest "p-NiO/LiNiO-GaN heterojunction PiN diode achieves competitive R_{ON,sp} and BV values comparable to GaN homojunction PiN diodes, and larger BV compared to other p-oxide/GaN HJ PiN diodes." ■ https://doi.org/10.1109/LED.2025.3549252

http://en.enkris.com/

Author: Mike Cooke

Table 1. Characteristics of EPFL variant diode structures.

Device	V _{ON}	R _{ON,sp}	BV
SBD	0.7V	$0.64 \mathrm{m}\Omega$ -cm ²	445V
p-NiO	1.1V	$0.84 \mathrm{m}\Omega$ -cm ²	550V
p-LiNiO	1.0V	$2.26 \mathrm{m}\Omega$ -cm ²	740V
p-NiO/p-LiNiO	1.7V	$1.15 \mathrm{m}\Omega$ -cm ²	1065V

Table 2. Comparison of EPFL p-NiO/LiNiO-GaN HJ PiN diode to other reported GaN PiN diodes.

Institution & year	V _{ON}	R _{ON,sp}	BV	Diode type
Nagoya Univ. 19	~3.2V	$1.2 \mathrm{m}\Omega$ -cm ²	905V	p-GaN epi
Virginia Tech. 23	~3V	$0.8 \mathrm{m}\Omega ext{-}\mathrm{cm}^2$	1700V	p-GaN epi
Cornell 16	~3V	$0.55 \mathrm{m}\Omega\mathrm{-cm}^2$	1700V	p-GaN epi
ASU 19	~3V	$0.8 \mathrm{m}\Omega ext{-}\mathrm{cm}^2$	1270V	p-GaN regrowth
Cornell 17	>3.2V	$3.9 \mathrm{m}\Omega\text{-}\mathrm{cm}^2$	1136V	p-GaN regrowth
EPFL 21	1.6V	$1.6 \mathrm{m}\Omega ext{-}\mathrm{cm}^2$	387V	p-oxide
NPU 21	2.3V	$1.42 \mathrm{m}\Omega$ -cm ²	350V	p-oxide
Latest EPFL work 25	1.7V	$1.15 \mathrm{m}\Omega$ -cm ²	1065V	p-oxide