## **Amorphous p-NiO/n-Ga<sub>2</sub>O<sub>3</sub> crystal solar-blind detection**

## Researchers claim record UV detectivity and open-circuit voltage.

Niversity of Science and Technology of China (USTC) claims record detectivity and open-circuit voltage for its nickel oxide/gallium oxide (NiO/Ga<sub>2</sub>O<sub>3</sub>) heterojunction solar-blind photodetector (SBPD) [Mengfan Ding et al, IEEE Electron Device Letters, published online 8 December 2022].

Such compact devices are of interest for high-performance, portable, low-power solar-blind ultraviolet (UV) detection systems for secure communication and flame detection, among other applications.  $Ga_2O_3$  has an ultrawide bandgap in the range 4.7–5.3eV (264–234nm photon wavelength). The bandgap is well away from the visible range 1.65–3.26eV (750–380nm).

The researchers used the NiO/Ga<sub>2</sub>O<sub>3</sub> heterojunction combination to produce a p-n junction due to the difficulty in achieving p-type conductivity in Ga<sub>2</sub>O<sub>3</sub>. Amorphous p-NiO has a relatively high hole mobility. The researchers demonstrate that "amorphous p-NiO has potential to construct an excellent staggered band alignment and superior interface with crystalline



Figure 1. (a) Device schematic diagram. (b) X-ray diffraction (XRD) pattern and transmission electron microscope (TEM) images (inset) and (c) atomic force microscope (AFM) image of  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> single crystal. (d) Raman spectrum and (e) XRD pattern and scanning EM (SEM) image (inset) of amorphous NiO film.

## Technology focus: Photodetectors 63

 $Ga_2O_3$ ," avoiding carrier-blocking trap states. The substrate for the device (Figure 1) was  $\beta$ -Ga<sub>2</sub>O<sub>3</sub> with a 1µm halide vapor phase epitaxy (HVPE) epitaxial layer with electron (n) concentration of 2x10<sup>16</sup>/cm<sup>3</sup>. The backside ohmic electrode of titanium/aluminium/nickel/gold (Ti/Al/Ni/Au) was applied and annealed after some dry etching. Surface damage from these processes was repaired using a Piranha solution consisting of 2:1 sulfuric acid:hydrogen peroxide (H<sub>2</sub>SO<sub>4</sub>:H<sub>2</sub>O<sub>2</sub>). This produced "an atomically flat Ga<sub>2</sub>O<sub>3</sub> upper surface with clear step structure and low roughness (0.19nm)," according to the team.

The p-type amorphous NiO was the result of room temperature RF sputtering. The Ni/Au top ohmic ring electrode was applied using electron-beam evaporation. The illumination window area was  $1.2 \times 10^{-3}$ /cm<sup>2</sup>.

The rectifying on/off dark current ratio of the diode between +3V and -3V was  $10^4$ . The use

of NiO, rather than directly applying Ni to the  $Ga_2O_3$  to form a Schottky junction, enhanced the reverse-bias response to 254nm radiation by four orders of magnitude.

The researchers investigated the performance with varied NiO oxygen content and thickness. The team comments: "The device with 30nm NiO film has the best performance due to the balance of NiO film transmittance and depletion region width of device." It was also found that higher oxygen content gave better performance, "mainly due to the higher hole concentration".

The 0V response to UV is of particular interest since it enables self-powered setups (Figure 2). The dark current noise was at the picoamp scale.

The photo-dark current ratio (PDCR) reached  $3x10^6$  under a 254nm illumination intensity of  $955\mu$ W/cm<sup>2</sup> with approximately linear performance. At the same intensity, the open-circuit voltage (V<sub>oc</sub>) reached 1.3V, "exceeding almost all the reported Ga<sub>2</sub>O<sub>3</sub> heterojunction photodetectors," according to the team (Figure 3).

The responsivity peaked at an "ultrahigh" 5A/W at 222µW/cm<sup>2</sup>, where the specific detectivity (D\*) was 1/6x10<sup>14</sup> Jones. The spectral performance of R peaked at 245nm, with a cutoff around 260nm. The rejection ratio

of 460nm visible light was  $2 \times 10^4$ . The response time to changes in intensity was better than 1ms.

| Function  | Material | Al content | Thickness |
|-----------|----------|------------|-----------|
| Contact   | p-GaN    | 0%         |           |
| Contact   | p-AlGaN  | graded     | 50nm      |
| Cladding  | p-AlGaN  | 100%-70%   | 320nm     |
| Waveguide | AIGaN    | 63%        | 120nm     |
| Cladding  | n-AlGaN  | 75%        | 400nm     |
| Substrate | AIN      |            |           |

Figure 2. (a) NiO/Ga<sub>2</sub>O<sub>3</sub> heterojunction photodetector current-voltage performance under 254nm illumination with different intensities. (b) Dependence of PDCR and R at 0V on light intensity. (c) Voc as function of light intensity. (d) Normalized spectral response at 0V.



Figure 3. Benchmark plots of (a) PDCR versus R and (b) D\* versus 1/(Decay time) from representative self-powered  $\text{Ga}_2\text{O}_3$  SBPDs. Red star represents USTC work.

https://doi.org/10.1109/LED.2022.3227583 Author: Mike Cooke