Split gate improves octagonal-cell silicon carbide MOSFET performance

Reduced capacitance and charge storage figures of merit show the first 1.2kV silicon carbide devices with better performance than 600V silicon-based power transistors.

ijeong Han and B. J. Baliga of North Carolina State University (NCSU) in the USA have combined split-gate structures with their 1.2kVrated octagonal-cell (OCTFET) layout for 4H-polytype silicon carbide metal-oxide-semiconductor field-effect transistors (MOSFETs) "for the first time" [IEEE Electron Device Letters, vol40, issue 7 (July 2019), p1163].

Han and Baliga reported late last year on the advantages of OCTFET over linear-cell layouts in terms of improved high-frequency figures of merit (HF FOMs) [www.semiconductor-today.com/news_items/2019/ feb/ncsu_010219.shtml]. The junction field-effect transistors (JFETs) were designed to operate in accumulation-mode rather than inversion-mode due to higher channel mobility.

The split-gate addition in the latest work removes some gate metal from over the JFET region, decreasing

capacitance and charge storage due to reduced gate-to-drain overhang, X (Figure 1). Han and Baliga explain: "The minimization of reverse transfer capacitance (C_{rss} or C_{gd}) and gate-to-drain charge (Q_{gd}) of the devices is beneficial for improving high-frequency performance because they are dominant factors that determine switching energy loss."

The split-gate addition in the latest work removes some gate metal from over the JFET region, decreasing capacitance and charge storage due to reduced gate-to-drain overhang

The devices (were fabricated at a 6-inch SiC power MOSFET foundry run by X-FAB in Texas. The 6-inch 4H-SiC substrate included a 10µm n-SiC epitaxial layer. While

Figure 1. (a) Split-gate OCTFET (SG-OCTFET) cell layout topology. (b) Split-gate MOSFET cell cross-section at A-A' in SG-OCTFET.

Technology focus: Silicon carbide 73

the substrate was heavily n-doped, the epitaxial layer was lightly doped to give a drift layer. The gate electrode and MOSFET connecting links consisted of polysilicon (Poly-Si).

Simulations were used to optimize the dimensions of the split-gate OCTFET cell: WJFET= 1.5μ m, a= 1.1μ m, X= 0.3μ m. The trade-offs for X included low on-resistance (large X favored) and low capacitance (low X). To keep the peak electric field down, the X value should also avoid the

region 0.7-0.9µm,

Figure 2. Measured gate charge of fabricated OCTFETs and SG-OCTFET at 800V drain bias and 10A drain current. Active area 0.045cm².

where the expected peak field was of order 4.4MV/cm. For a peak field of less than 4MV/cm, and low HF-FOM values, the X value should be less than 0.3μ m.

The split-gate OCTFET was found to have reduced gate–drain capacitance-charge storage, as represented in the HF-FOMs combining specific on-resistance with gate–drain capacitance and charge storage ($R_{on}C_{gd}$ and $R_{on}Q_{gd}$, respectively, Table 1 and Figure 2). The reduced capacitance/charge compensated for the increased $R_{on,sp}$ (measured at 20V gate potential, 10A drain current) of the OCTFET layout, relative to linear cells.

Low C_{gd} also boosted the C_{iss}/C_{gd} FOM, where C_{iss} is the input capacitance, i.e. the sum of C_{gd} and C_{gs} . Large values of the C_{iss}/C_{gd} FOM are associated with false-turn-on suppression and low shoot-through current when the voltage changes rapidly. The output capacitance, C_{oss} , is the sum of C_{ds} and C_{qd} .

Han and Baliga also quote the RQ FOM values for Infineon's silicon-based 600V COOLMOS power transistor (IPL60R365P7) at 1240 (310m Ω x4nC), and Cree's 'state-of-the-art' 1.2kV SiC power linear cell topology MOSFET (CREE C2M0160120D) at 2240 (160m Ω x14nC). The researchers write: "Our work demonstrates for the first time that a HF-FOM [R_{on}xQ_{gd}] 1.66-times better than the 600V COOLMOS product can be achieved in a 1.2kV SiC power MOSFET by using the SG-OCTFET topology, which opens new application opportunities for 1.2kV SiC power MOSFETs."

https://doi.org/10.1109/LED.2019.2917637 Author: Mike Cooke

	0_J1.5	0_J1.1	0_J1.1_C	0_J1.5_SG	
WA-A'	5.10µm	4.53µm	3.75µm	5.10µm	
Channel density	0.256/µm	0.259/µm	0.377/µm	0.256/µm	
JFET (X) density	0.144	0.098	0.143	0.052	
Breakdown	1607V	1605V	1605V	1625V	
Vt _h	2.12V	2.02V	2.12V	2.02V	
R _{on.sp}	$8.38 \mathrm{m}\Omega$ -cm ²	$12.82 \mathrm{m}\Omega$ -cm ²	$8.47 \mathrm{m}\Omega$ -cm ²	$8.51 \mathrm{m}\Omega$ -cm ²	
C _{iss.sp}	32nF/cm ²	33nF/cm2	37nF/cm ²	33nF/cm ²	
C _{oss.sp}	1073pF/cm ²	1067pF/cm ²	1069pF/cm ²	1076pF/cm ²	
C _{ad.sp}	62pF/cm ²	35pF/cm ²	48pF/cm ²	27pF/cm ²	
Qg _{d,sp}	233nC/cm ²	113nC/cm ²	144nC/cm ²	88nC/cm ²	
C _{iss} /C _{ad} FOM	516	943	771	1222	
RonxCad HF-FOM	520m Ω -pF	449m Ω -pF	407m Ω -pF	230m Ω -pF	
RonxQad HF-FOM	1953mΩ-nC	1449mΩ-nC	1220mΩ-nC	749mΩ-nC	

Table 1. Experimental results for OCTFETs and split-gate OCFET with varying dimensions: O_J1.5,