
Researchers in Singapore have
reported high-frequency performance
of gallium nitride (GaN) indium 

aluminium nitride (InAlN) high-electron-
mobility transistors (HEMTs) on silicon 
substrates, including the first noise meas-
urements [S. Arulkumaran et al, IEEE 
Electron Device Letters, published online 
13 August 2014]. The team from Nanyang
Technological University and the A*STAR
(Agency of Science, Technology and Research)
organization believe such devices are good
candidates for low-noise and high-linearity
receiver circuit applications. 
The product of the unilateral power gain

cut-off and gate length is the “highest ever
reported for InAlN/GaN HEMT on silicon
substrate”, according to the researchers.
Alternative substrates for GaN HEMTs are
silicon carbide (SiC) or sapphire. 
The HEMT heterostructures were grown

on high-resistivity silicon (111) substrates
using metal-organic chemical vapor deposition
(MOCVD). The nucleation layer of 100nm
AlN was followed by a 1000nm GaN buffer,
1nm AlN spacer and 9nm In0.17Al0.83N barrier.
The InAlN composition gives a lattice match to that of
GaN. The InAlN/AlN/GaN interface results in a two-
dimensional electron gas (2DEG) channel in the GaN
buffer with mobility of 759cm2/V-s and carrier concen-
tration of 2.74x1013/cm2.
HEMT fabrication began with mesa isolation through a

plasma etch process. The ohmic contacts consisted of
annealed titanium/aluminium/nickel/gold. The T-gate
of nickel/gold had a 0.17µm footprint/gate length (Lg)
and 0.5µm head. The gate width was 2x75µm. The
source–gate and gate–drain separations were 0.8µm
and 1.7µm, respectively. Passivation was provided by
plasma-enhanced chemical vapor deposition (PECVD)
of silicon nitride.
The maximum current density of the device was

1320mA/mm at 1V gate potential. The maximum
extrinsic transconductance was 363mS/mm. The

researchers comment: “The observed current density
is almost double than that of similar AlGaN-barrier
thick GaN HEMTs (800mA/mm).”
In frequency measurements, the cut-off (fT) was

found to be 64GHz at –2.4V gate and 6V drain biases.
The unilateral power gain cut-off (fmax(U)) was 72GHz.
The maximum stable gain fmax(MSG) was 106GHz. The
researchers add: “The product fmax(U)xLg=12.24GHz-µm
is the highest ever reported for InAlN/GaN HEMT on Si
substrate.” In InAlN-barrier HEMTs on silicon carbide, 
a product of 25GHz-µm has been achieved, possibly
due to better 2DEG mobility or lower parasitic effects. 
Noise performance was measured between 2GHz and

18GHz with a drain bias of 4V and gate potential of
–2.25V (Figure 1). The minimum noise figure (NFmin)
measurements at 10GHz and 18GHz were 1.16dB and
1.76dB, respectively. The corresponding associated
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Figure 1. (a) NFmin and Ga versus frequencies (2–18 GHz).

Singapore researchers present a good candidate for low-noise and
high-linearity receiver circuit applications. 



gain (Ga) readings were 11.54dB and 7.5dB. The
researchers write: “The obtained NFmin at 10GHz and
18GHz are comparable to the reported values for
AlGaN/GaN on Si substrate with the same gate length.
The measured NFmin of our devices at 18GHz is compa-
rable to the NFmin of InAlN/GaN on SiC and AlN/GaN on
Si substrate (see Table 1).” 
In the lower-frequency 2-8GHz range the Singapore

device demonstrated slightly high NFmin values and
some variation in performance that could be attributed
to shot-noise effects from the gate leakage currents
associated with the Schottky-based gate structure.
Metal-insulator-semiconductor gate stacks would reduce
leakage, hopefully reducing the noise in this lower range.
The noise figure variation (NFmin(low) – NFmin(high))

/(IDS(max)–IDS(min)) of 1.36dB-mm/A at 10GHz and
1.67dB-mm/A at 18GHz over the drain current range
100mA/mm-636mA/mm was smaller than found by

other groups producing AlN/GaN HEMTs and
AlGaN/GaN HEMTs with similar gate lengths on silicon
substrate (Figure 2). However, short-gate InAlN/GaN
HEMTs on SiC show smaller variation, due presumably
to the use of field plates and ohmic contact re-growth
to reduce access resistance.
The researchers also assessed current collapse under

gate-lag and drain-lag pulsed bias conditions. The 
collapse was 9% in both cases. The researchers say
that the gate-lag current collapse is better and the
drain-lag collapse is comparable to previously reported
measurements on InAlN/GaN HEMTs on sapphire 
substrates. The reduced collapse effect is related to 
the lattice-matched InAlN barrier and optimized 
silicon nitride passivation, according to the team. ■
http://ieeexplore.ieee.org/xpl/articleDetails.jsp
?arnumber=6877666
Author: Mike Cooke 
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Figure 2. (a) Variation of NFmin and Ga over drain current (ID) at 10GHz and 18GHz. (b) Pulsed drain–source
current–voltage (IDS–VDS) characteristics for InAlN/GaN HEMTs on silicon substrate.

Affiliation HEMT structure Lg(µm) NFmin(dB) (NFmin(low) — NFmin(high))/(IDS(max)—IDS(min))
@10(18)GHz @10GHz (dB-mm/A) 

UIUC AlGaN/GaN on SiC 0.25 0.75 (0.98) –1.25
IEMN AlGaN/GaN on Si 0.17 1.1  (1.8) –14.4
Renesas AlGaN/GaN/AlGaN on Si 0.16 0.78 (-1.2) —
ETH-Z InAlN/GaN on SiC 0.10 0.62 (1.5) —
CNRS InAlN/GaN on SiC 0.15 0.8 (1.8) –1.18
Triquint InAlN/GaN on SiC 0.05 0.3 –0.74
NTU AlGaN/GaN on Si 0.25 1.25 –8.49
IEMN AlN/GaN on Si 0.16 1.0 (1.8) –1.67
This work InAlN/GaN on Si 0.17 1.16 (1.76) 1.36

Table 1.




