InP/GaAsSb DHBT with record more than 700GHz power-gain cut-off

Base contact resistance has been reduced by in-situ argon sputtering treatment of the GaAsSb base before metal deposition.

he Swiss Federal Institute of Technology (ETH-Zürich) has reported a record power-gain cut-off frequency, f_{MAX}, of 700GHz for a double heterostructure bipolar transistor (DHBT) based on indium phosphide (InP) and gallium arsenide antimonide (GaAsSb) [Ralf Flückiger et al, Appl. Phys. Express, vol7, p034105, 2014].

The epitaxial material structure (Figure 1) was achieved using metal-organic chemical vapor deposition (MOCVD) on 2-inch semiinsulating InP substrates. The heterostructure used staggered gap 'Type II' InP/GaAsSb junctions where the band discontinuities are in the same direction. Such structures allow the use of a simplified pure InP collector, giving good thermal conductivity and high breakdown voltages.

The transistors were constructed as 'triple-mesa' devices with 0.4µm-wide emitter and base, achieved with inductively coupled plasma and wet etch processes. The emitter-base junction area was 0.3µmx4.4µm.

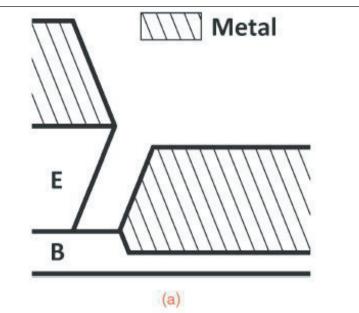
The emitter and base electrodes consisted respectively of titanium/platinum/gold and palladium/nickel/platinum/ gold. The surface of the

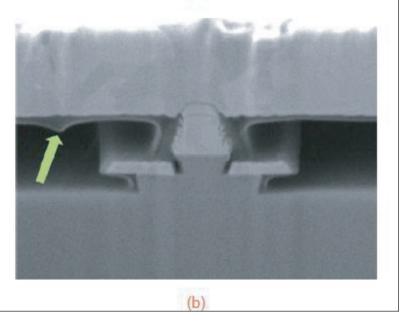
Emitter contact	Ga _{0.75} In _{0.25} As	5nm
Graded emitter contact	Ga _z In _{1-z} As	10nm
Emitter contact	Ga _{0.47} In _{0.53} As	20nm
Emitter	InP:Si	130nm
Emitter	InP:Si	5nm
Graded emitter	Ga _v In _{1-y} P:Si	10nm
Emitter	Ga _{0.22} In _{0.78} P:Si	5nm
Graded base	$GaAs_xSb_{1-x}$	20nm
Collector	InP:S	125nm
Pedestal	InP:S	50nm
Etch stop	Ga _{0.40} In _{0.60} As:Si	20nm
Buffer	InP:S	300nm
Substrate	Semi-insulating InP	

Figure 1. Epitaxial layer sequence. The gradings in the upward direction were x = 0.41-0.59, y = 0.22-0.00, and z = 0.47-0.75.

Technology focus: Transistors119

Figure 2. (a) Schematic representation of emitter and base contact. The emitter contact acts as a mask for argon sputtering and protects base access region. (b) Scanning electron micrograph of focused-ion-beam cross section of representative DHBT. Arrow indicates residuals of Teflon planarization.


GaAsSb base was treated using an in-situ argon sputtering process before metal deposition (Figure 2). The treatment is found to reduce contact resistivity from ~10⁻⁶ Ω -cm² to ~10⁻⁹ Ω -cm². The process removed about 10nm of GaAsSb, including oxidation layers. The emitter was protected by the metal contact electrode layers that acted as a self-aligned mask.


Passivation of the emitter and base sidewalls was provided by plasma-enhanced chemical vapor deposition (PECVD) of silicon nitride. A lowtemperature Teflon-based etch-back process was used to planarize the devices before the deposition of probe pads.

The RF performance was measured between 0.2GHz and 40GHz, giving estimated current- (f_T) and power-gain (f_{MAX}) cut-offs of 442GHz and 701GHz, respectively, at a collector–emitter voltage (V_{CE}) of 1.2V. With a higher V_{CE} of 1.6V, the corresponding estimates were 429GHz and 715GHz.

The researchers write: "The present devices show a ${\sim}100GHz$ higher f_{MAX} than those previously reported with the same epitaxial layer structure."

The DC gain of the device was 11 and the commonemitter breakdown voltage (BV_{CEO}) was over 5V. ■ http://iopscience.iop.org/1882-0786/7/3/ 034105/article Author: Mike Cooke

REGISTER for Semiconductor Today free at www.semiconductor-today.com