InGaAs QW HEMT for 6G communications

Researchers claim record balanced current/power gain cut-off performance.

Researchers based in South Korea and Japan have reported optimized indium gallium arsenide (InGaAs) quantum well (QW)-channel high-electronmobility transistors (HEMTs) with what is claimed to be record balanced frequency performance (Figure 1) [Wan-Soo Park et al, IEEE Transactions on Electron Devices, published online 10 January 2023.].

The team from Kyungpook National University and Quantum Semiconductor International Inc (QSI) in South Korea and NTT Corp in Japan, comment: "To the best of our knowledge, the $In_{0.8}Ga_{0.2}As$ QW HEMTs with $L_{side} = 150$ nm in this work exhibit the highest favg at all gate lengths in any III–V HEMT technology and the best balance of f_T and f_{max} in any transistor on any material system."

The various cut-off frequencies refer to different gain parameters. The T cut-off refers to current gain, while f_{max} refers to Mason's unilateral (power) gain (Ug). The researchers explain: "fmax is a more appropriate figure of merit for analog and mixed-signal applications for which the transistor provides a power gain." The favg value consists of the geometric mean of these two cut-off frequencies.

The team sees its achievements as contributing to meeting the demands of 'Edholm's law', a Moore's Law-like prescription for convergence of wired, wireless and nomadic capabilities as frequencies enter the sub-millimeter wavelength range for sixth-generation (6G) communications.

A key component of the work was optimizing L_{side} "as an effective remedy to mitigate the peak electric field intensity at the drain side of the gate, helping to reduce the intrinsic output conductance (g_{oi}) in aggressively scaled-down devices."

The material (Figure 2) for the QW HEMTs was grown on semi-insulating (100) indium phosphide (InP) substrates, using metal-organic chemical vapor deposition (MOCVD).

Figure 1. (a) Benchmark of favg versus gate length (L_g) for devices with different side-recess spacing (L_{side}) and those for other group reports on III–V HEMTs. (b) Benchmark of f_{max} as a function of f_T for various devices compared with the team's.

Technology focus: Transistors 73

In the fabricated HEMTs (Figure 3), a gate-recess was implemented with InP used as an etch-stop layer. The recessing gave a gate-channel distance (tins) of about 5nm.

The doped cap had a two-layer structure to enhance tunneling efficiency between the QW channel and the source/drain contacts.

Without the capping layer the structure exhibited a two-dimensional electron gas (2DEG) of 1.78×10^{12} /cm² density and 13,500cm²/V-s mobility, according to Hall measurements.

The source–drain distance was 1µm. The ohmic source/drain electrodes consisted of titanium/ molybdenum/titanium/platinum/gold (Ti/Mo/Ti/Pt/Au). The devices were isolated using mesa etching. The source/drain space was insulated with plasmaenhanced chemical vapor deposition (PECVD) silicon dioxide (SiO₂). The T-gate was formed in the source–drain space, consisting of Pt/Ti/Pt/Au.

The researchers took particular care to control the side-recess spacing (L_{side}) by controlling the gate recess etch time. The gate length (L_g) varied between 300nm and 20nm. Some HEMTs were fabricated with longer gates between 10µm and 0.5µm, using an i-line 365nm ultraviolet stepper rather than electron-beam lithography.

Devices with 20nm L_g and 150nm L_{side} demonstrated a cut-off frequency (f_T) of 0.75THz, extrapolated from 1–50GHz measurements. The 1.1THz maximum oscillation frequency (fmax) was derived from a smallsignal model rather than measured directly from Ug, which was "challenging" to extrapolate. Reducing L_{side} to 50nm gave a similar f_T of 0.72THz, but there was a significant impact on fmax, which

declined to 0.53THz.

The enhancement of the wider L_{side} on $f_{\rm T}$ was attributed to reduced delay times as a result of improvements in short-channel effects (SCEs). The researchers add: "Most importantly, the device with a wider L_{side} led to a far better f_{max} behavior due to the suppressed intrinsic output conductance $(g_{\rm oi})$."

Among the SCEs improved by the wider 150nm L_{side} was a drain-induced barrier lowering (DIBL) value to 60mV/V, compared with 110mV/V for 50nm.

The team sees reducing the equivalent oxide thickness (EOT) between the gate and channel as key to accessing further improvements in frequency performance. However, the Schottky gate setup limits the ability to simply reduced the barrier thickness, which would at the same time increase gate leakage. The researchers comment: "In this regard, the use of an

Cap1	$n^{++}-In_{0.53}Ga_{0.47}As$	12nm
Cap2	n ⁺ -In _{0.52} Al _{0.48} As	15nm
Spacer	In _{0.52} Al _{0.48} As	3nm
Stopper	InP	3nm
Barrier	In _{0.52} Al _{0.48} As	5nm
Spacer	In _{0.52} Al _{0.48} As	4nm
Sub-channel	In _{0.53} Ga _{0.47} As	1nm
Channel	In _{0.8} Ga _{0.2} As	5nm
Sub-channel	In _{0.53} Ga _{0.47} As	3nm
Buffer	In _{0.52} Al _{0.48} As	200nm
Substrate	InP	

Figure 2. Material for HEMTs. Red dashed line represents silicon δ -doped layer.

MIS [metal-insulator-semiconductor] scheme with high-k dielectric layers would help to not only scale down EOT but also effectively suppress the gate leakage current."

https://doi.org/10.1109/TED.2022.3231576 www.qsilaser.com Author: Mike Cooke

Figure 3. Schematic sketch of In_{0.8}Ga_{0.2}As QW HEMT.